On strongly jump traceable reals

نویسنده

  • Keng Meng Ng
چکیده

In this paper we show that there is no minimal bound for jump traceability. In particular, there is no single order function such that strong jump traceability is equivalent to jump traceability for that order. The uniformity of the proof method allows us to adapt the technique to showing that the index set of the c.e. strongly jump traceables

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Jump-traceability I : the Computably Enumerable Case

Recent investigations in algorithmic randomness have lead to the discovery and analysis of the fundamental class K of reals called the K-trivial reals, defined as those whose initial segment complexity is identical with that of the sequence of all 1’s. There remain many important open questions concerning this class, such as whether there is a combinatorial characterization of the class and whe...

متن کامل

The Sixth Lecture on Algorithmic Randomness∗

This paper follows on from the author’s Five Lectures on Algorithmic Randomness. It is concerned with material not found in that long paper, concentrating on Martin-Löf lowness and triviality. We present a hopefully user-friendly account of the decanter method, and discuss recent results of the author with Peter Cholak and Noam Greenberg concerning the class of strongly jump traceable reals int...

متن کامل

Reals which compute little

We investigate combinatorial lowness properties of sets of natural numbers (reals). The real A is super-low if A′ ≤tt ∅′, and A is jump-traceable if the values of {e}A(e) can be effectively approximated in a sense to be specified. We investigate those properties, in particular showing that super-lowness and jump-traceability coincide within the r.e. sets but none of the properties implies the o...

متن کامل

Reals which Compute Little André

We investigate combinatorial lowness properties of sets of natural numbers (reals). The real A is super-low if A′ ≤tt ∅′, and A is jump-traceable if the values of {e}A(e) can be effectively approximated in a sense to be specified. We investigate those properties, in particular showing that super-lowness and jump-traceability coincide within the r.e. sets but none of the properties implies the o...

متن کامل

Characterizing the Strongly Jump-traceable Sets via Randomness

We show that if a set A is computable from every superlow 1random set, then A is strongly jump-traceable. Together with a result of Greenberg and Nies (Benign cost functions and lowness properties, J. Symb. Logic 76 (1): 289-312, 2011), this theorem shows that the computably enumerable (c.e.) strongly jump-traceable sets are exactly the c.e. sets computable from every superlow 1-random set. We ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ann. Pure Appl. Logic

دوره 154  شماره 

صفحات  -

تاریخ انتشار 2008